ClubTread Community - View Single Post - Improving the Way Humans Walk the Walk

View Single Post
post #1 of (permalink) Old 03-25-2002, 02:54 AM Thread Starter
Summit Master
Join Date: Oct 2001
Location: Langley, BC, Canada.
Interest: Hiking, backpacking, snowshoeing, photography, computers, yoga and traveling.
Posts: 7,689
Default Improving the Way Humans Walk the Walk

This is from a NY Times article, March 12/2002. An interesting read.

Improving the Way Humans Walk


AIROBI, Kenya - As dawn breaks, Linnette Otieno leaves her small house
on Nairobi's outskirts and walks five miles to market. On her head is
a load of firewood she plans to sell. The load weighs about 65 pounds.
She hardly sweats.

"I've been doing this since I was 6," she explains as she hoists the
wood onto her head with an experienced motion.

When she was growing up in her home village in western Kenya, she had
to walk even farther to gather firewood, up to eight hours a day. By
now, at age 35, she says long journeys with heavy loads are second

Scientists have long wondered how women like Ms. Otieno are able to
carry so much so easily. Now, in a study to be published shortly, two
researchers from Europe describe the trick in detail: women from
certain African tribes unconsciously modify their gait to walk using
less energy. The energy they save is applied to carrying the weight.

The study, which follows two previous articles in the journal Nature,
is the first documentation of humans' improving the economy of

"Every person and every animal that we have yet tested has roughly the
same walking economy, except for these African women," said an author
of the study, Dr. Norman Heglund, a physiologist at the Catholic
University of Louvain in Belgium. "We were pretty surprised."

Dr. R. McNeill Alexander, an expert on biomechanics who has written a
number of books on human and animal locomotion, said the study could
be an important step to understanding how to improve the human walk.

Using the results, he said, "we might be able to teach hikers with
rucksacks and soldiers with heavy packs to save similar amounts of

The research began when Dr. Heglund was working in Kenya in 1977. He
became intrigued when he saw how easily the women walked while
carrying heavy loads.

To test his observations, Dr. Heglund and his colleagues asked several
women to walk on a treadmill, then measured oxygen consumption and
heart rate while they carried a range of weights.

They found that the women could carry 20 percent of their own body
weight with no additional exertion. "There wasn't even a blip in their
oxygen usage," Dr. Heglund said.

In a control group at Harvard, he asked subjects to walk on a
treadmill wearing bicycle helmets lined with varying amounts of lead.
Oxygen consumption rose with even the lightest helmet.

Dr. Heglund found an old Army study documenting the amount of energy
that recruits needed to carry heavy packs and found that it rose
significantly when they carried the same weight that the African women
bore without extra strain.

Looking for a hypothesis, Dr. Heglund turned to Dr. Giovanni Cavagna,
a physiologist at the University of Milan, who had created a model of
how reduced gravity would affect astronauts walking on the moon. Dr.
Cavagna suggested he consider whether the women were changing the way
they walked. That proved to be critical, and now, many years later,
the two have written the new study explaining the phenomenon.

The walking human can be imagined as a small steel ball (the center of
mass) propelled forward on top of two stiff wires (the legs). With
each step forward, one end of a wire is planted on the ground, and the
steel ball swings in an arc around the other end, just like an
upside-down pendulum. As the ball reaches the end of its arc, the
other wire is planted farther forward on the ground, and the process
is repeated.

To maintain forward movement, the energy of the steel ball needs to be
transferred from one pendulum to the other. In normal walking humans,
only 65 percent of that energy is actually transferred; the rest is
dissipated and must be replaced by additional muscle energy.

But the African women have a secret weapon, the researchers
discovered. As they transfer their weight, they transfer at least 80
percent of their forward energy to the next step. Only 20 percent must
be replaced by the muscles, leaving plenty of energy in reserve to
carry the weight on their heads.

The secret of this efficiency lies in the difference between the two
components of energy, potential and kinetic. Potential energy is
stored by moving an object to a higher location, able to be released -
as kinetic energy - when the object falls.

In a pendulum, there is a near- perfect back and forth transferral of
energies: at the height of the pendulum's swing, the ball is not
moving and all of the energy is potential; as it falls it is converted
into kinetic energy; at the bottom of the swing all of the energy is
kinetic. As the ball begins its movement back up the other side of the
arc, the energy is transferred back into potential energy, and the
process is repeated.

Since each step of a walking human can be understood as an upside-
down pendulum, a similar transferral takes place. But the system is
nowhere near as efficient as a pendulum. At the height of each step,
the normal walking human begins to drop down, losing potential energy
without transferring it into kinetic energy, which would generate
additional forward speed. The African women, however, are able to
minimize this loss through a tiny alteration of their gait.

Interestingly, they apply this trick only when they are carrying
things on their heads. When they walk unloaded, Dr. Heglund found,
they waste as much energy as all other walkers. It is only as they
begin to balance heavy loads on their heads that they change their

It's a tiny difference that is almost invisible to the naked eye, and
"even the women don't know how they do it," Dr. Heglund said. But with
a sophisticated training program, he went on, "you could train other
people to do the same thing."

LongShadow is offline  
For the best viewing experience please update your browser to Google Chrome